Мы работаем для Ваc
Пн-Пт: 9:00 - 18:00
Сб: 10:00 - 13:00
sales@stabenergy.com.ua

    Электронный стабилизатор напряжения - состав и принцип работы

    ИЗ ЧЕГО СОСТОИТ И КАК РАБОТАЕТ ЭЛЕКТРОННЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

    Современные бытовые и промышленные стабилизаторы напряжения производятся двух типов: сервоприводные и электронные. С сервоприводными стабилизаторами, или как их еще называют электромеханическими, можно ознакомиться в одной из наших статей на сайте. А мы рассмотрим состав и принцип работы электронного стабилизатора напряжения.
    Электронные стабилизаторы напряжения можно классифицировать по следующим критериям:
    по типу переключающего элемента:
    - реле
    - тиристор
    - симистор
    по количеству ступеней переключения и точности стабилизации (наиболее распространенные на рынке Украины):
    7 ступеней, ориентировочная  точность стабилизации +/-10%
    9 ступеней, ориентировочная  точность стабилизации +/-7%
    12 ступеней, ориентировочная  точность стабилизации +/-5%
    16 ступеней, ориентировочная  точность стабилизации +/-3%
    32 ступени, ориентировочная  точность стабилизации +/-1,5%
    36 ступеней, ориентировочная  точность стабилизации +/-1%
    48 ступеней, ориентировочная  точность стабилизации +/-0,5-1%
    по количеству фаз стабилизации
    - однофазные стабилизаторы напряжения 
    - трехфазные стабилизаторы напряжения
    по материалу изготовления обмоток  трансформатора:
    - алюминий
    - медь
    по типу охлаждения:
    - принудительное
    - естественное
      
    СОСТАВ И ЭЛЕМЕНТНАЯ БАЗА ЭЛЕКТРОННОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ
    Основными элементами электронного стабилизатора напряжения являются:
    - коммутационный элемент: реле/симистор/тиристор
    - силовой автотрансформатор
    - плата управления
    КОММУТАЦИОННЫЙ ЭЛЕМЕНТ СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ
    В зависимости от маркетинговой и технической стратегии, производители стабилизаторов напряжения выбирают схемо-техническое решение, в котором применяют один из коммутационных элементов: реле (контактная коммутация), симистор или тиристор (бесконтактная коммутация).  И как показывает практика, некоторые технические решения могут основываться на использовании одновременно двух разнотипных переключателей. Например, у одного из украинских производителей стабилизаторов напряжения, компании Элекс, есть стабилизатор напряжения с названием «Ампер Гибрид» - в котором применены как реле, так и симисторы. Благодаря такому подходу стабилизатор напряжения занял уверенную бюджетную ценовую позицию.
    Релейные стабилизаторы напряжения: из названия стабилизатора понятно, какой переключающий элемент используется – реле. Реле это элемент с электромагнитным удержанием переключателя во включенном или выключенном состоянии.  Реле, как правило, применяются  в маломощных стабилизаторах напряжения с мощностями до 5 кВт, реже  8-10кВт. Это объясняется высокими токами коммутации и возможным пригоранием контактной группы на больших  нагрузках (из-за искрообразования).  Достоинством применения реле является их относительная дешевизна. А основными недостатками: ограниченное количество переключений (около 200 000 срабатываний), искрение и пригорание контактов,  невысокая скорость переключения, механический износ, повышенное тепловыделение.
    Симисторные стабилизаторы напряжения: Коммутирующим элементом в таком стабилизаторе выступает симистор. Симистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока.
    Тиристорные стабилизаторы напряжения. Тиристор - это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент часто сравнивают с управляемым диодом и называют полупроводниковым управляемым вентилем (Silicon Controlled Rectifier, SCR). Тиристор имеет три вывода, один из которых - управляющий электрод, можно сказать, "спусковой крючок" - используется для резкого перевода тиристора во включенное состояние.
    Общими свойствами для тиристорных и симисторных стабилизаторов напряжения является их долговечность работы и высокая скорость переключения. Главным недостатком тиристоров и симисторов является их высокая стоимость.
     
    СИЛОВОЙ ТРАНСФОРМАТОР
    В стабилизаторах напряжения электронного типа в качестве преобразователя напряжения используется автотрансформатор.
    Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения. Используя это свойство автотрансформатора, и производятся стабилизаторы напряжения. На каждый вывод автотрансформатора подводится силовой коммутационный элемент (см.выше описание), который переключает необходимый вывод (отвод) автотрансформатора на подключенную к стабилизатору напряжения нагрузку.
    Преимуществом автотрансформатора является более высокий коэффициент полезного действия, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. 
     
    ПЛАТА УПРАВЛЕНИЯ
    Все выпускаемые стабилизаторы напряжения имеют в своем составе плату управления. Основными возлагаемыми на нее задачами являются: контроль и измерение параметров входного сетевого напряжения, управление коммутирующими элементами для переключения между обмотками автотрансформатора, обеспечение пользовательского интерфейса и выполнение основных защит: от перегрузок, перегрева, перенапряжения на входе.
     
    Подводя итог рассмотрения состава и назначения основных элементов электронного стабилизатора напряжения можем разобрать основной принцип его работы. Плата управления производит измерение напряжения поступающего напряжения и в случае обнаружения «ухода» заданного параметра – принимает решение на управление силовым коммутирующим элементом для перехода на необходимый отвод автотрансформатора, который обеспечит выходное напряжение в заданном виде. Приведем пример: если на входе стабилизатора было сетевое напряжение 220В, то автотрансформатор работал с отводом №3 и на этом отводе автотрансформатор выдает 220В +/-погрешность. Теперь рассмотрим ситуацию с понижением входного напряжения до 170В, в этом случае плата  управления принимает решение переключиться на отвод автотрансформатора №5, который при входном напряжении в 170В обеспечит  выходное напряжение номиналом  220В+/-погрешность. Именно такими переключениями на необходимый отвод автотрансформатора в зависимости от поступающего напряжения на входе и происходит стабилизация. Точность стабилизации (погрешность) имеет прямую зависимость от количества отводов автотрансформатора и силовых коммутирующих элементов – чем их больше, тем точность выходного напряжения выше.
    Мы рассмотрели состав и основной принцип обеспечения стабилизации сетевого напряжения. В современных электронных стабилизаторах напряжения применяются достаточно сложные алгоритмы работы, имеется всевозможная масса настроек параметров стабилизации и управления, разнотипные устройства индикации и отображения (ЖК дисплей, светодиоды, дискретные элементы отображения), а в некоторых стабилизаторах есть функция удаленного мониторинга. Во всех хитростях и нюансах большинства стабилизаторов напряжения представленных на рынке Украины профессионально разбираются специалисты компании НТС-ГРУПП, ТМ «Электрокапризам-НЕТ!». Мы всегда открыты и готовы делиться своим богатым опытом в подборе стабилизаторов напряжения под любые задачи.
     
    Автор: Борисов Сергей Петрович, г.Киев, 2018 год.  При копировании материала полностью или частично -  ссылка на автора и первоисточник обязательна.